'Candidatus Paenicardinium endonii', an endosymbiont of the plant-parasitic nematode Heterodera glycines (Nemata: Tylenchida), affiliated to the phylum Bacteroidetes.
نویسندگان
چکیده
Bacteria-like endosymbionts of females of the plant-parasitic nematodes Globodera rostochiensis and Heterodera goettingiana and juveniles of Heterodera glycines were first observed during transmission electron microscopy (TEM) studies conducted in the 1970s. These organisms were characterized as being rod-shaped, ranging in size from 0.3 to 0.5 microm in diameter and 1.8 to 3 microm in length and containing structures labelled as striated inclusion bodies or tubular structures. A population of H. glycines was obtained from the soybean field where infected nematodes were first discovered in order to conduct TEM studies of females and males and to determine the phylogenetic position of the H. glycines endosymbiont among bacteria by studying the 16S rRNA and gyrB gene sequences. The bacterium was observed in the pseudocoelom and intestine of juveniles, females and males, in hypodermal chords of juveniles and males, in ovary walls and in oocytes and spermatozoa. The bacterium was polymorphic, measuring 0.4-0.8 x 2.5-4.5 microm, and many specimens contained an array of microfilament-like structures similar to those observed in "Candidatus Cardinium hertigii", the endosymbiont of Encarsia spp. wasps. Phylogenetic analysis of the 16S rRNA and gyrB genes of the H. glycines-infecting bacterium revealed 93 % and 81 % sequence identity, respectively, to the homologous genes in "Candidatus C. hertigii". Thus, the name "Candidatus Paenicardinium endonii" is proposed for the bacterial endosymbiont of the plant-parasitic nematode H. glycines.
منابع مشابه
The soybean cyst nematode, Heterodera glycines: a genetic model system for the study of plant-parasitic nematodes.
Despite advances in understanding plant responses to nematode infection, little information exists regarding parasitic mechanisms. Recently, it has become possible to perform genetic analysis of soybean cyst nematode. Integration of classic and reverse genetics and genomic approaches for the parasite, with host genetics and genomics will expand our knowledge of nematode parasitism.
متن کاملThe use of DNA microarrays for the developmental expression analysis of cDNAs from the oesophageal gland cell region of Heterodera glycines.
Summary A microarray was printed containing cDNAs from a library made from cytoplasm microaspirated from the oesophageal gland cell region of parasitic stages of the soybean cyst nematode, Heterodera glycines. The array contained both previously described clones (Wang et al. Mol. Plant-Microbe Interact. 2001, 14, 536-544) and uncharacterized cDNAs. Fluorescent probes for array hybridization wer...
متن کاملPlant-parasitic Nematode Acetylcholinesterase Inhibition by Carbamate and Organophosphate Nematicides.
The sensitivity of acetylcholinesterases (ACHE) isolated from the plant-parasitic nematodes Meloidogyne arenaria, M. incognita, and Heterodera glycines and the free-living nematode Caenorhabditis elegans to carbamate and organophosphate nematicides was examined. The AChE from plant-parasitic nematode species were more sensitive to carbamate inhibitors than was AChE from C. elegans, but response...
متن کامل“Cyst-ained” research into Heterodera parasitism
Nematodes are roundworms that constitute the phylum Nematoda. Only a small fraction of nematode genera contains plant-parasitic or animal-parasitic species, while the majority of nematodes are free-living [1]. Heterodera glycines, the soybean cyst nematode, is a plant-parasitic nematode causing major damage to soybean production worldwide. Annual United States yield loss estimates due to H. gly...
متن کاملMolecular Characterization of Aldolase from Heterodera glycines and Globodera rostochiensis.
Fructose-bisphosphate aldolase (EC 4.1.2.13) is a key enzyme in glycolysis. We have characterized full-length coding sequences for aldolase genes from the cyst nematodes Heterodera glycines and Globodera rostochiensis, the first for any plant-parasitic nematode. Nucleotide homology is high (83% identity), and the respective sequences encode 40 kDa proteins with 89% amino acid identity. Genomic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of systematic and evolutionary microbiology
دوره 56 Pt 7 شماره
صفحات -
تاریخ انتشار 2006